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FOREWORD

TheASMECodesandStandardsCommittee for verification, validation, anduncertaintyquantification in computational
modelingandsimulation (VVUQCommittee) is responsible for coordinating,promoting, and fostering thedevelopmentof
standards that provide procedures for verification, validation, and uncertainty quantification of computational models
and simulations. One of the subcommittees of the VVUQ Committee is the VVUQ 30 Subcommittee, which is focused on
verification, validation, and uncertainty quantification in computational simulation of nuclear system thermal fluids
behavior. The VVUQ30 Subcommittee’s charter is to provide the practices and procedures for verification and validation
of software* used to calculate nuclear system thermal fluids behavior.While a singlemodelmayhavemanyuses, complex
systems such as nuclear power plants require a collection of multiple models to be adequately represented. Thus, the
focus of the VVUQ 30 Subcommittee is not on a single model, but a specific collection of coupled models (CCM).
Historically, one of themost challenging aspects of determining the credibility of the software* has been ensuring that

the validation is applicable to the particular scenario in the real-world system. Many features including size, operating
conditions, and a heating source from fission oftenmake it infeasible to obtain prototypical experimental data for nuclear
system thermal fluid behavior. Due to cost and safety reasons, experimental facilities are usually scaled down from the
real-world plant. Thus, performing validation based on such facilities has the additional complexity (and task) of needing
to ensure that the results fromvalidation are applicable to the real-world system. ASMEVVUQ1defines “applicability” as
the relevance of the evidence from the verification, validation, anduncertainty quantification activities to support the use
of the computational model for a context of use. However, this is a relativity new definition. In the nuclear industry,
applicability, specifically as it relates toensuring theexperimental data is relevantwith respect to thebehavior of the real-
world system, has been called scaling analysis. Scaling has been a major focus in the nuclear industry almost since its
inception and has major ramifications in determining if the computational models used to simulate nuclear system
thermal fluids behavior can be useful or useless. One of the challenges in obtaining appropriate experimental data
for nuclear reactor systems is ensuring that the experiment contains the appropriate physical behavior. Such behavior
is oftendirectly impacted bypressures and temperatures, heat fluxes, local geometries (e.g., lengths, areas, volumes), and
local fluid properties. However, it is impossible to perform an experiment where all factors can bemaintained exactly as
would be found in a real-world nuclear reactor.
This Standard, in its first edition, is intended to provide practices and procedures for scaling analysis methodologies.

Future revisions will be published as necessary.
Following approval by the ASME VVUQ Standards Committee, ASME VVUQ 30.1-2024 was approved by the American

National Standards Institute on June 12, 2024.

* In many other engineering communities, “software” is often used to refer to generic packages, such as commercial off-the-shelf programs, and a
specific collection of coupledmodels used to simulate a specific systemwould still be considered amodel. However, the term “software” is used here to
mean thespecific collectionof couplemodels (CCM) inorder todistinguishbetween theentire collectionofmodelsandaspecificmodel (SM),providinga
solution based on geometric configurations and initial and boundary conditions.
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SCALING METHODOLOGIES FOR
NUCLEAR POWER SYSTEMS RESPONSES

1 PURPOSE, SCOPE, INTRODUCTION, AND NOMENCLATURE

1.1 Purpose

When determining the credibility of amodel, a key question is what the accuracy of the computational model is for the
real-world conditions where the systemwill operate. This accuracy is called predicative capability and is often based on
the model validation. To estimate the model’s predictive capability, first the error of the model needs to be determined
under conditions where empirical data is available. This is referred to as the validation error. Often, based on the simi-
larity of the test facilities and real-world systems, the validation error is used as an estimate of the model’s error when
making predictions on the real-world system. Thus, a key assumption is that themodel’s predictive capability of the real-
world system is similar to the model’s accuracy in predicting the empirical (experimental) data. If both systems have
similar physical behavior, it is expected that the model’s accuracy will be similar in both systems (the real-world system
and the experiment).
There can be many reasons why the model’s validation error may be very different from the model’s predictive

capability.While experimentalists strive toensure that the experiment is similar to the real-world system, somesacrifices
often need to bemade. For example, due to the large size and inherent complexity, experimental facilities used to provide
data to validate models for nuclear power plant scenarios often must be scaled down from the true nuclear power plant
dimensions and operational conditions (such as pressure, temperature, and flow rates). This may include operating the
experiment at lower powers and pressures, at a reduced size, or using other fluid. While these changes may not directly
impact themodel validation (sincevalidation isbasedon the comparisonof the empirical data to themodel’s predictions),
these changes certainly impact the applicability of the model for the real-world system. For example, if a specific system
was influenced by behavior that was sensitive to a characteristic length (e.g., hydraulic diameter), area (e.g., flow area),
and volume, the scaled system (e.g., experiment) could not be scaled in all three values at once. Consider liquid flow
through a tube. If the diameter is reduced by a factor of 2, the flow cross-section area and volume must be reduced by a
factor of 4 while the wall heat transfer area is still decreased (as diameter) by a factor of 2. Thus, a phenomenon such as
boiling, inwhich all of these geometry factors could be important, requires amethod todetermine if the scaled systemcan
provide useful data, or if the scaled system is not similar to the particular scenario in the real-world system. In nuclear
thermal fluid systems, the relevance of the empirical (experimental) data to the real-world system is determined through
scaling analysis. Scaling is not focused on howwell the computational model predicts the empirical data (i.e., validation).
Instead, scaling is focusedon if amodelvalidatedwith theempiricaldatawill be relevant to thereal-world system. Inother
words, scaling formalizes the connection between the test facility and real-world system.
This Standard provides practices and procedures for determining if experimental data (used to validate models) is

applicable to the real-world system. Historically, such analysis has been unique for nuclear reactor applications where
conditions of fluid, both single- and two-phase, are highly size dependent due to surface-to-volume ratio, size-dependent
interfacial shape (flow regimes), and interfacial area density. However, it is hoped that the presented scaling analyses
methodologies developed for the nuclear community can be used to benefit other fields of engineering and science or
combined with other methodologies already developed.

1.2 Scope

This Standard is focusedon the scaling analysis that is used to evaluate the effects of differences (e.g., distortions) in the
phenomenological behavior of experimental facilities compared to the phenomenological behavior of the real-world
system. This includes scaling analysis methodologies for supporting the design of facilities and experiments capable of
generating data that characterize the phenomena present in an entire system [such facilities are knownas integral effects
test (IET) facilities] and in components of the system (e.g., the nuclear core or the steam generator) [such facilities are
known as separate effects test (SET) facilities].
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